import holoviews as hv
import hvplot
import hvplot.pandas # noqa
import pandas as pd
import statsmodels.formula.api as smf
= "holoviews" pd.options.plotting.backend
Benchmarking: Zarr Version
Read summary of all benchmarking results.
= pd.read_parquet("s3://carbonplan-benchmarks/benchmark-data/v0.2/summary.parq") summary
Subset the data to isolate the impact of Zarr version and chunk size.
= summary[
df "projection"] == 4326)
(summary[& (summary["pixels_per_tile"] == 128)
& (summary["shard_size"] == 0)
& (summary["region"] == "us-west-2")
]
Set plot options.
= ["#E1BE6A", "#40B0A6"]
cmap = {"width": 600, "height": 400} plt_opts
Create a box plot showing how the rendering time depends on Zarr version and chunk size.
df.hvplot.box(="duration",
y=["actual_chunk_size", "zarr_version"],
by="zarr_version",
c=cmap,
cmap="Time to render (ms)",
ylabel="Chunk size (MB); Zarr Version",
xlabel=False,
legend**plt_opts) ).opts(
Fit a multiple linear regression to the results. The results show that the chunk size strongly impacts the time to render. Datasets with larger chunk sizes take longer to render. The Zarr version does not have a noticeable impact on rendering time.
= smf.ols("duration ~ actual_chunk_size + C(zarr_version)", data=df).fit()
model model.summary()
Dep. Variable: | duration | R-squared: | 0.511 |
Model: | OLS | Adj. R-squared: | 0.507 |
Method: | Least Squares | F-statistic: | 132.4 |
Date: | Sat, 02 Sep 2023 | Prob (F-statistic): | 4.58e-40 |
Time: | 19:45:37 | Log-Likelihood: | -2050.1 |
No. Observations: | 256 | AIC: | 4106. |
Df Residuals: | 253 | BIC: | 4117. |
Df Model: | 2 | ||
Covariance Type: | nonrobust |
coef | std err | t | P>|t| | [0.025 | 0.975] | |
Intercept | 2066.9020 | 82.158 | 25.158 | 0.000 | 1905.102 | 2228.702 |
C(zarr_version)[T.3] | -17.5790 | 91.439 | -0.192 | 0.848 | -197.657 | 162.499 |
actual_chunk_size | 84.7372 | 5.208 | 16.269 | 0.000 | 74.480 | 94.995 |
Omnibus: | 37.985 | Durbin-Watson: | 1.955 |
Prob(Omnibus): | 0.000 | Jarque-Bera (JB): | 52.057 |
Skew: | -0.953 | Prob(JB): | 4.96e-12 |
Kurtosis: | 4.116 | Cond. No. | 31.2 |
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
Show the rendering time at different zoom levels.
= {"width": 400, "height": 300}
plt_opts
= []
plts
for zoom_level in range(4):
= df[df["zoom"] == zoom_level]
df_level
plts.append(
df_level.hvplot.box(="duration",
y=["actual_chunk_size", "zarr_version"],
by="zarr_version",
c=cmap,
cmap="Time to render (ms)",
ylabel="Chunk size (MB); Zarr version",
xlabel=False,
legend=f"Zoom level {zoom_level}",
title**plt_opts)
).opts(
)2) hv.Layout(plts).cols(
/Users/max/mambaforge/envs/benchmark-maps/lib/python3.10/site-packages/holoviews/plotting/bokeh/plot.py:987: UserWarning: found multiple competing values for 'toolbar.active_drag' property; using the latest value
layout_plot = gridplot(
/Users/max/mambaforge/envs/benchmark-maps/lib/python3.10/site-packages/holoviews/plotting/bokeh/plot.py:987: UserWarning: found multiple competing values for 'toolbar.active_scroll' property; using the latest value
layout_plot = gridplot(
Add a multiplicative interaction term with zoom level to the multiple linear regression. The results show that chunk size has a significant impact on rendering performance at higher zoom levels, with the most pronounced affect at zoom level 3.
= smf.ols("duration ~ actual_chunk_size * C(zoom)", data=df).fit()
model model.summary()
Dep. Variable: | duration | R-squared: | 0.919 |
Model: | OLS | Adj. R-squared: | 0.917 |
Method: | Least Squares | F-statistic: | 401.4 |
Date: | Sat, 02 Sep 2023 | Prob (F-statistic): | 2.29e-131 |
Time: | 19:45:37 | Log-Likelihood: | -1820.2 |
No. Observations: | 256 | AIC: | 3656. |
Df Residuals: | 248 | BIC: | 3685. |
Df Model: | 7 | ||
Covariance Type: | nonrobust |
coef | std err | t | P>|t| | [0.025 | 0.975] | |
Intercept | 2274.2785 | 56.178 | 40.484 | 0.000 | 2163.633 | 2384.925 |
C(zoom)[T.1.0] | 171.4040 | 79.447 | 2.157 | 0.032 | 14.927 | 327.881 |
C(zoom)[T.2.0] | -595.6177 | 79.447 | -7.497 | 0.000 | -752.095 | -439.141 |
C(zoom)[T.3.0] | -440.4506 | 79.447 | -5.544 | 0.000 | -596.928 | -283.974 |
actual_chunk_size | -6.0398 | 4.286 | -1.409 | 0.160 | -14.482 | 2.403 |
actual_chunk_size:C(zoom)[T.1.0] | 71.2072 | 6.062 | 11.747 | 0.000 | 59.268 | 83.147 |
actual_chunk_size:C(zoom)[T.2.0] | 140.8571 | 6.062 | 23.236 | 0.000 | 128.918 | 152.796 |
actual_chunk_size:C(zoom)[T.3.0] | 151.0435 | 6.062 | 24.917 | 0.000 | 139.104 | 162.983 |
Omnibus: | 23.536 | Durbin-Watson: | 1.445 |
Prob(Omnibus): | 0.000 | Jarque-Bera (JB): | 39.029 |
Skew: | 0.545 | Prob(JB): | 3.35e-09 |
Kurtosis: | 4.572 | Cond. No. | 94.1 |
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.